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DCS/CSCI 2350
Social & Economic Networks

How do diseases, behavior, 
opinion, technology, etc. 
propagate in a network?

Cascading Behavior in Networks

Reading: Ch 19 of EK

Mohammad T. Irfan
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NSF Core Research Grant
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My recent research

Networks Game Theory
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My recent research
• Influence in networks (with Phillips’19 and 

Ostertag-Hill’20)
• Power of context in influence networks (with 

Gordon’17)
• Influence in residential segregation

http://mtirfan.com/research 
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http://mtirfan.com/research
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My recent research
• Congestion games
• Emergence of roles in multi-agent asset markets 

(with Albers’23)
• Cascades and overexposure (with Hancock’21 

and Friel’22)

http://mtirfan.com/research 
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Diffusion of innovations

• Studied in sociology since 1940s
• One’s choice influences others

7

http://mtirfan.com/research
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Types of diffusion

• Indirect/informational effects – social learning
• Photo/video going viral

• Direct-benefit effects
• Technology adoption– Xbox/PS5, phone, fax, email, FB
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Examples

• Adoption of hybrid seed corn in Iowa
• Ryan and Gross, 1943

• Adoption of tetracycline by US doctors
• Coleman, Katz, and Menzel, 1966
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Shared ingredients in examples

• Indirect effects
• Adoption was high-risk, high-gain
• Early adopters had higher socioeconomic status
• Social structure was important– visibility of 

neighbors’ activity
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Success 
factors of 
diffusion

Diffusion of Innovations– 
Everett Rogers (1995)
• Complexity
• Observability
• Trialability
• Compatibility
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#TheDress
(February 2015)
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Viral Facebook post (2013)
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Hush puppies (1995)
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Next

• Modeling diffusion
• Connection with the things we know
• The strength of weak ties
• Clustering

20

Threshold models 
for diffusion

21
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Precursor: Granovetter's model

• Mark Granovetter’s threshold model of collective 
behavior (1978)
• An individual will adopt an action if at least a 

certain number (threshold) of other individuals 
adopt it
• Riot example
• General networks and distribution of threshold

22

• Collective behavior: Relatively spontaneous, 
unstructured, extra-institutional behavior of a 
fairly large number of individuals. (Goode)
• Residual field in sociology

• Collective action: People acting together in 
pursuit of common interests. (Tilly) 
• 1990s to date

23
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Contagion Model
Stephen Morris, 2000
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Initial adopters

Granovetter's model: individuals with 0-threshold 
are the initial adopters
   vs.
We can set initial adopters without any regard for 
their threshold (modeling assumption by Kleinberg et al.)
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Example: switching from B to A

• Initially, everyone does B
• Payoff parameters: b = 2, a = 3
• Threshold for switching to A, q = 2/5 = 40%
• We will set two initial adopters of A and 

"play out" the diffusion

30
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Complete cascade

• Def. A set of initial adopters causes a "complete 
cascade" if everyone adopts the new action at 
the end of diffusion.
• Always happens?
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Diffusion and strength of weak ties
• Weak ties are conveyors of information
• But cannot “force” adoption of behavior

Would Align with own 
community
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Diffusion and clustering

• Does clustering help or hinder diffusion?

Every node in these 
clusters have at most 
1/3 fraction of friends 

outside.

Will they ever adopt 
the new behavior?

q = 2/5 = 40%

Clustering hinders diffusion

35
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What are the factors for a 
widespread diffusion?

• Initial adopters
• Network structure
• Threshold value q
• Quality of product– payoff parameters a and b

• Example: viral marketing

36

More general 
models

38



11/11/24

15

Cascades with 
heterogeneous thresholds

• Node v’s threshold = bv/(av + bv)
• Same calculation as before

39
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Further extension:
linear threshold model
All friendships are not the same! 
=> influence

Reference: Handout (on Canvas)
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Influence maximization problem

Given k > 0, select a set of k initial adopters so that 
the spread of the new behavior is maximized
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Cascades and Overexposure in Social 
Networks: The Budgeted Case

Kim Hancock Laura M. Friel

Mohammad T. Irfan

Paper Link
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Cascades 
and

influence 
maximization (IM)
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https://tildesites.bowdoin.edu/~mirfan/papers/Overexposure_AAMAS_2022.pdf
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Overexposure
Green: accepting node
Red: rejecting node
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How do we select a set of initial 
adopters (or seeds) that will 

maximize the spread of influence 
while minimizing overexposure?
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Unbudgeted seeding

Abebe, Adamic, and Kleinberg (AAK), AAAI 2018
○ Polynomial-time algorithm for the unbudgeted case

○ Proved hardness of the budgeted case
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How do we select up to k initial 
adopters that will maximize the 

spread of influence while 
minimizing overexposure?

Paper Link
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https://tildesites.bowdoin.edu/~mirfan/papers/Overexposure_AAMAS_2022.pdf
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Modeling overexposure (AAK)

• Undirected, unweighted graph
• Each node: a criticality parameter, 𝜃𝑖
• Product appeal, 𝜙

Accepting node: 𝜙 ≥ 𝜃𝑖 
Rejecting node: 𝜙 < 𝜃𝑖 

Product appeal = 0.7
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Propagation model (AAK)

Accepting node:
Sends information to ALL 
neighbors.

Rejecting node: 
Does not send to anybody.
Inflicts global cost!
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Overexposure problem

Given budget k, 
maximize payoff = # of accepting – # of rejecting 
    nodes reached

Example (budget, k = 1)

Select left: payoff = 2 – 3 = -1

Select right: payoff = 3 – 2 = 1
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Cluster graph formulation

Assumption: A rejecting node 
cannot be at the boundary of 
more than two clusters of 
accepting nodes.

Input graph

Cluster graph

Simple cluster graph for 
very complex input graph

54
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Algorithms 
for classes of 
cluster graphs

Cluster graph may be a tree, but the 
input graph can be very complex!
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Lower quality products need smarter algorithms to avoid 
overexposure.

Higher quality products can be coupled with extremely 
simple and fast greedy algorithms. 
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